First passage times of driven DNA hairpin unzipping.
نویسندگان
چکیده
We model the dynamics of voltage-driven transport of DNA hairpins through transmembrane channels. A two-dimensional stochastic model of the DNA translocation process is fit to the measurements of Mathé, who pulled self-hybridized DNA hairpins through lipid-embedded alpha-hemolysin channels. As the channel was too narrow to accommodate hybridized DNA, dehybridization of the hairpin became the rate-limiting step of the transport process. We show that the mean first passage time versus voltage curve for the escape of the DNA from the transmembrane channel can be divided into two regions: (1) a low-voltage region where the DNA slides out of the pore in reverse and without undergoing significant dehybridization, and (2) a region where the DNA dehybridizes under the influence of the applied voltage and translocates across the membrane.
منابع مشابه
Internal vs Fishhook Hairpin DNA: Unzipping Locations and Mechanisms in the α-Hemolysin Nanopore
Studies on the interaction of hairpin DNA with the α-hemolysin (α-HL) nanopore have determined hairpin unzipping kinetics, thermodynamics, and sequence-dependent DNA/protein interactions. Missing from these results is a systematic study comparing the unzipping process for fishhook (one-tail) vs internal (two-tail) hairpins when they are electrophoretically driven from the cis to the trans side ...
متن کاملNanopore unzipping of individual DNA hairpin molecules.
We have used the nanometer scale alpha-Hemolysin pore to study the unzipping kinetics of individual DNA hairpins under constant force or constant loading rate. Using a dynamic voltage control method, the entry rate of polynucleotides into the pore and the voltage pattern applied to induce hairpin unzipping are independently set. Thus, hundreds of unzipping events can be tested in a short period...
متن کاملFirst passage times and asymmetry of DNA translocation.
Motivated by experiments in which single-stranded DNA with a short hairpin loop at one end undergoes unforced diffusion through a narrow pore, we study the first passage times for a particle, executing one-dimensional Brownian motion in an asymmetric sawtooth potential, to exit one of the boundaries. We consider the first passage times for the case of classical diffusion, characterized by a mea...
متن کاملStatistical Physics of Unzipping DNA
The denaturation of double-stranded DNA as function of force and temperature is discussed. At room temperature, sequence heterogeneity dominates the physics of single molecule force-extension curves starting about 7 piconewtons of below a ∼15 pN unzipping transition. The dynamics of the unzipping fork exhibits anomalous drift and diffusion in a similar range above this transition. Energy barrie...
متن کاملUnzipping kinetics of double-stranded DNA in a nanopore.
We studied the unzipping of single molecules of double-stranded DNA by pulling one of their two strands through a narrow protein pore. Polymerase chain reaction analysis yielded the first direct proof of DNA unzipping in such a system. The time to unzip each molecule was inferred from the ionic current signature of DNA traversal. The distribution of times to unzip under various experimental con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical biology
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2005